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INTRODUCTION

Recent proposals for orbiting space systems have stimulated research

in the design, analysis and control of large space structures. Such t

structures are envisioned to be very large (one review paper [1] speculates

about "a structure nearly the size of Manhattan Island") and are often in

the form of lattice structures. A lattice structure is a network of

slender elements which are connected by joints. This paper is concerned -

with the analysis of the dynamics and, in particular, the wave-like

motion of lattice structures.

It is convenient to use matrix methods to analyze the dynamics of

lattice structures. In particular, the dynamics of a lattice member may

be described by a transfer matrix relationship, and the dynamics of a

joint in a lattice structure may be described by a joint coupling matrix

relationship. In order to study wave propagation in lattice structures, -

it is convenient to introduce wave-mode coordinates and scattering matrices.

Wave-mode coordinates are obtained through the process of diagonalizing

or uncoupling the transfer niatrix relationship. When the transformation

used to uncouple the transfer matrix is applied to the joint coupling

matrix relationship, the scattering matrix is obtained.

In this paper, the derivations leading to wave-mode coordinates and

scattering matrices in lattice structures are reviewed. In addition,

simple one-dimensional examples are given to illustrate how wave-mode

coordinates and scattering matrices may be used to describe dynamics and

wave propagation in large space lattice structures.
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ANALYSIS

State Vectors and Transfer Matrices

In the matrix formulation of the dynamics of lattice structures, the

state or configuration of the lattice is determined by state vectors

which exist at each point in the lattice. The state vector at a particular

point is a column matrix whose components may be displacements, rotations,

internal forces and internal moments. The actual components contained

in a state vector at a particular point depend on the model used to

describe the latt: ce at that point.

If the members of a lattice structure are slender, they may be modeled

as one-dimensional continua. The components of the state vectors (and

the state vectors themselves) of a one-dimensional continuous member are

functions of time and one local spatial coordinate, say, x which extends

along the length of the member. At a particular location x = x1 , the

Fourier transform of the state vector of a one-dimensional member is given

by [21

CO"

Z(Xl /_o Z(Xl' -i~t
Z(x,w) = z(xt)e dt (1)

where z(xi,t) is the state vector at x = xl, _(xl,w) is the Fourier trans-

form of the state vector at x = x, t is time, w is radian frequency, and

i = Y . The state vector z(xl,t) is given in terms of the transformed

state vector z(xl,w) by the inverse Fourier transform relationship [2]

z(xV) i f z(xllw)ei°t dw (2)

-4-z--(Xlt = 2-A



Throughout this paper, an overbar will signify a Fourier transform, and

an underbar will signify a vector or a matrix.

The Fourier transforms of the state vectors at two locations x = xI

and x = 2 of a one-dimensional lattice member can be related by a transfer

matrix according to

z(x2,w) = T(x 2 - xlw)z(xlw) (3)

where T(x2 - X1 ,w) is the n x n transfer matrix (here n is the (even)

number of components of the transformed state vectors z(x 2,w) and z_(Xl,)) ,

which is a function of the separation (x2 - x1 ) and the frequency w. The

transfer matrix is derived from the equations of motion and the constitutive

equations of the member. Transfer matrices for several specific types of

lattice members are given in [3].

Wave-Mode Coordinates and Propagation Constants

The transfer matrix T in eqn. (3) generally contains nonzero elements

off its main diagonal, and therefore the scalar equations relating the

components of z(x2 ,w) and z(xl,w) are coupled. In order to study wave

propagation in lattice structures, it is convenient to cast the transfer

matrix relationship given by eqn. (3) into a different form. In particular,

it is desirable to diagonalize the transfer matrix, and thus produce an

uncoupled set of scalar equations. This diagonalization may be accomplished

by the following procedure.

First, the eigenvectors of T are found, and the n x n wave-mode matrix

Y.) is assembled. The columns of Y() are the eigenvectors of the

transfer matrix T. Next, a new vector w(x,w) is defined by the equation

5-'.
A,.
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w(X,w) Y y_-(W) z__(x , w)(4 .

The vector w(x,w) will be discussed and interpreted shortly. From eqn. (4)

it follows that

z(x,&') Y(W)w(x,W) (5)

Note that the existence of Y (w) in eqn. (4) depends on the linear

independence of the eigenvectors of T [4]. Substitution of eqn. (5) into

eqn. (3) gives

Y(w)w(x wL) T(x2  x1 ,W)Y(CU)w(x1,,w) (6)
2 2-

Premultiplication of both sides of eqn. (6) by Y (w) gives

W(x2,W) = W()W(xlw) (7)

where

W(w) - Y- (w)T(x 2 - x W) Y(w) (8)

The n x n matrix W() is called the wave-mode propagation matrix. Assuming

that the eigenvectors of T are linearly independent (and that, therefore,

-lY (w) exists), the matrix W(w) is a diagonal matrix of the form [4]

-6-.



K 0 . . . 0
1 %'

0 K2

W~w (9)

0

0 . 0 K

n

where the K. (i = 1,2 ... n) are the n eigenvalues of T. For uniform
I

lattice members, which are considered exclusively in this paper, the

transfer matrix T is cross-symmetric, and therefore the eigenvalues

of T occur in pairs (K., 1/K.), j = 1,2, ..., n/2 (5].

The vector w(x, w) given by eqn. (4) is called the wave-imode vector,

and the components of w(x, w) are called wave-mode coordinates. The

wave-mode coordinates are given in terms of the physical components of

the state vector by eqn. (4), and the physical components of the state

vector are given in terms of the wave-mode coordinates by eqn. (5). In

general, each wave-mode coordinate will be a combination of all the

components of the state vector. The wave-mode matrix Y(w), which gives

the transformation between the wave-mode vector and the state vector,

is similar in some respects to the modal matrix used in the analysis

of multiple degree of freedom vibratory systems.

Because the matrix W() in eqn. (7) is diagonal, the wave-mode

coordinates are uncoupled from each other as they propagate from x =x

to x = x 2 along the lattice member. The components of w(x, u) are

called wave-mode coordinates because they represent, for many lattice .

member models, propagating waves. Eqn. (9) can be written in the form

- 7-
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Yl(X2_Xl

e 0 . 0

W~ = 0 eY2 (x2-x1 ) (10
w (W) =(10)

0

n (x2-x )
0 0 e

where the quantities yi (i = 1,2, .... n) satisfy the equations

i(x 2 -x I )
K. = e (11)1

or

Yi x ln(Ki) (12)

The quantities yi are called "propagation constants", and are in general

complex. Since the eigenvalues K.i occur in pairs (K., 1/K.), the propa-

gation constants occur in pairs (yj, -y.), j = 1,2, ..., n/2. The

general form of the propagation constant pair (y., -y.) is [6]

yj c(w) + ik(w) (13)

-yj -a(0) - ik(w) (14)

where w() is called the attenuation and k(w) is called the wave number.

Propagating waves represented by wave-mode coordinates may be

classified according to the nature of their corresponding propagation

constants. If a propagation constant is purely imaginary, the wave

represented by the corresponding wave-mode coordinate is not attenuated

-8-
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as it propagates. If a propagation constant has a nonzero real part and

a nonzero imaginary part, the wave represented by the corresponding wave-

mode coordinate is attenuated as it propagates. A propagation constant

which is purely real corresponds to a wave-modn coordinate which does not

represent a wave at all, but rather represents a nonpropagating spatially

attenuated vibration. If the imaginary part of a propagation constant
-!

is linearly proportional to frequency w, the wave represented by the

corresponding wave-mode coordinate is nondispersive, and the phase

velocity of the wave is given by the inverse of the constant of pro-

portionality. If the imaginary part of a propagation constant is not

linearly proportional to frequency, the wave represented by the corre-

sponding wave-mode coordinate is dispersive.

The physical interpretation of the fact that propagation constants

for uniform members occur in pairs (yj, -y.) is that for uniform members
j J

identical waves may propagate in either the direction of increasing x

or the direction of decreasing x. Propagation constants withanonpositive

real part and a negative imaginary part correspond to wave-mode coordi-

nates which represent waves which propagate in the direction of increasing

x, and propagation constants with a nonnegative real part and a positive

imaginary part correspond to wave-mode coordinates which represent waves 7

which propagate in the direction of decreasing x. For passive lattice

members (that is, for lattice members with no external energy inputs),

propagation constants with a positive imaginary part must also have a

nonnegative real part, and propagation constants with a negative

imaginary part must also have a nonpositive real part [6].

-9- - 9 - e
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Joint Coupling Matrices and Scattering Matrices

The dynamics of a joint in a lattice structure may be described

by a joint coupling relationship of the form [7]

B f (15)
- -ext

-i

where the z. (i = 1,2, ... , m) are the state vectors of the m members

which are connected to the joint at the respective points of contact

between the members and the joint, f is a vector containing the-e x t 
.

Fourier transforms of the external forces and moments which are applied

to the joint, and B is a matrix called the joint coupling matrix. The

joint coupling matrix is derived from the equations of motion of the

joint, the constitutive equations of the joint, and the geometric com-

patibility requirements at the joint. The explicit form of the joint

coupling matrix for arbitrary two and three-dimensional rigid joints

with mass is given in [7].

Eqn. (15) is written in terms of the state vectors z. (i 1,2, m).

In order to describe the dynamics of a joint in terms of wave-mode coordi-

nates, the following transformations are introduced:

z. = Y.(c)W., i = 1,2, ... m (16)

- 10 -
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F* th

tohere joitandw) is the wave-mode atrix of the member ihi at thed

t.t

point of contact between the i L member and the joint. Substitution

of eqn. (16) into eqn. (15) gives

Y( w

B .(17)

which can be written in the form

C =f (18)
* -ext

w
--in

where

YG) 0 . . . 0

Cr-B 0 (-2).(9

0 *

L0 0 . . (Wc)

-A 71P'



2 '

Eqn. (18) describes the dynamics of a joint in terms of wave-mode vectors ,

w.. As discussed above, the wave-mode vectors contain wave-mode coordi-
-1

nates which represent waves travelling along the members. In describing

the dynamics of a joint in terms of wave-mode coordinates, it is con-

venient to group the wave-mode coordinates into two groups: wave-mode

coordinate which represent waves "entering" the joint, and wave-mode

coordinates which represent waves "leaving" the joint. A wave-mode
t h

coordinate in the i member attached to the joint represents a wave

entering the joint if

-I-
Fgn ilmQT,) e) (n e (20)

whcre is the propagation constant corresponding to the particular

wave-mode coordinate, e . is a unit vector pointing in the direction of

th
increasing x_, where x. is the (local) x-axis of the i member attached1 1

to the joint, and n. is the outward unit normal to the joint at the point
t-

where the i member is attached to the joint. Eqn. (20) will be

satisfied if the x.-axis points "into" the joint and the wave-mode1

coordinate propagates in the direction of increasing xi, or if the

x.-axis points "away from" the joint and the wave-mode coordinate propa-

gates in the direction of decreasing x.. A wave-mode coordinate in the

•t h "'
i member attached to the joint represents a wave leaving the joint if

sgn Im() (n. e ) -1 (21)Ira(, • 1 --x .

- 12 -
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Eqn. (21) will be satisfied if the x.-axis points "into" the joint

and the wave-mode coordinate propagates in the direction of decreasing

xi, or if the x.-axis points "away from" the joint and the wave-mode
.

coordinate propagates in the direction of increasing x.. Fig. 1

illustrates schematically wave-mode coordinates entering and leaving

a generic joint.

The scalar equations in eqn. (18) may now be rearranged to give

-out
D -- (221)"

-- --ext _

1w in I"

where w is a vector containing all the wave-mode coordinates leaving -.
--ou t,-

the joint, w. is a vector containing all the wave-mode coordinates-in :

entering the joint, and D is the matrix obtained by rearranging the

scalar equations of eqn. (18) into the form of eqn. (22). (The matrix

manipulations leading to eqn. (22), and all the other matrix manipu-

lations described in this section, will become clearer in the examples

given below.) Eqn. (22) can be written as J,

D + D. w. =f (23)-out -out -in -in --ext

where D is the submatrix of D which multiplies w and D. is the
-out -out' -n

submatrix of D which multiplies w. . Premultiplication of both sides-- -in

of eqn. (23) by Dou (assuming that D exists) gives
out -out

w + D D.w = D f (24)
-out -out-in--in --out -ext

- 13-
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or

--out --() Win + - -ext (25)

where

-1I

S( ) M -D- 1 D (26)
-- -out -in

and

G( ) = D (27)
-out

The matrix S(w) is called the scattering matrix of the joint, and the

matrix G(w) is called the wave-mode generation matrix of the joint.

Eqn. (25), which is merely a manipulated form of eqn. (17), is the

final form of the description of the dynamics of a joint in terms of

wave-mode coordinates. Eqn. (25) may be considered as an input-output

relationship for the joint, and states that outgoing waves may be

generated by incoming waves via the scattering matrix S(w), or may be

generated by external forces (or moments) via the wave-mode generation

matrix G(L). The scattering matrix S(W) contains the transmission and

reflection coefficients which the wave-mode coordinates encounter as

they enter the joint. If the transmission and reflection coefficients

in S(w) depend on the frequency w, the scattering at the joint is called

dispersive. If the transmission and reflection coefficients in S(w)

are independent of frequency, the scattering is called nondispersive.

With a scattering matrix and a wave-mode generation matrix for

each joint in a lattice, and a wave-mode matrix and a wave-mode propagation

- 14 -



matrix for each member in a lattice, it is possible in principle to

analyze wave propagation in lattice structures of arbitrary complexity.

Following several intermediate examples, a complete simple example of

such an analysis is given in the next section.

1

.,%

.-?

,.

'a

.5
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EXAMPLES

In this section, some simple one-dimensional examples are given to

illustrate the concepts discussed above. Emphasis is placed on inter-

pretation of the results, which in these simple examples can be checked

by intuition and by elementary methods.

Example 1: Wave-Mode Coordinates for an Elastic Longitudinal Rod

In this example, wave-mode coordinates and propagation constants

are derived for an elastic longitudinal rod. A section of an elastic

longitudinal rod is shown in Fig. 2, which also shows the local coordi-

nate x and the sign convention adopted for the displacements u1 and

u and the forces F and F The rod is assumed to be uniform, with

mass density p, cross-sectional area A, and elastic modulus E. The

Fourier transform of the state vector at x = x. is

ul

(28)

and the Fourier transform of the state vector at x x 2 isu
-- = (29)

2

The vectors z and z are related by the transfer matrix relationship

-16-
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z2 =Tz (30)
-2 ---1

where the transfer matrix T is given by [31

k sin6cose si
EA

-JA 2 sine cos0

where I

x 2  x (32)

PA (33)

kwE (34)

The eigenvalues of the matrix T in eqn. (31) are [8]

K = cosO - isine = e (35)
1%

ie (36) '.i.'

K cos0 + isine = e
2

Therefore, the propagation constants given by eqn. (12) are

1 -. '-

S((-i3) 7)

- 17 -
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Y2 9 (i)= iw2E (38)

The eigenvectors of the matrix T in eqn. (31) are [81

v = (39)

-iRo )I

v2  = (40)

iRi"

where

R A (41)

Note that the quantity R is the mechanical impedance of the rod [9].

Since the eigenvectors of the transfer matrix T are given by

eqns. (39) and (40), the wave-mode matrix for the longitudinal rod is

1 1

Y(W) = (42)

iRw iRw

The inverse of the wave-mode matrix is

iRw]

y1 (43)

The wave-mode propagation matrix W(w) given by eqn. (9) is

.

- 18 - ",
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I

W() YTY = (44)0 e

where

= iU) (45)
E

The wave-mode vector w at x = x2 and the wave-mode vector w at-2--2

x = x I are related according to eqn. (8) by

H2 W(w)w 1  (46)"

Writing out eqn. (46) gives

) t(47)

LL w 2  e _j I ,''

Eqn. (47) is the diagonalized form of the transfer matrix relationship =

given by eqn. (30). The components w and w of the wave-mode vectors

- and w in eqn. (47) are written with a plus (+) superscript since the

propagation constant -y which corresponds to w 2 and wI has a negative

imaginary part, indicating that w and w I  represent waves which

travel in the direction of increasing x. Similarly, the components

w 2  and w1  are written with a minus (-) superscript since the propa-

gation constant y which corresponds to w 2  and w I  has a positive

- 19 -. ,



.

imaginary part, indicating that w2  and w I represent waves which

travel in the direction of decreasing x.

From eqns. (4) and (43), the wave-mode coordinates for the longi-

tudinal rod are given in terms of the physical components of the state

vector by

1 w -( x , L ) I I F ( x ' W ) I, 
.,'

iRw

which when written out gives the scalar equations

,

w (x 'W) = -u (x , ) iR T (x ,W ) (49) .

w (x,) = (u(x,W) + 1 F(x,W)) (50)

Note that each wave-mode coordinate contains information about both the

displacement u and the force F. From eqns. (5) and (40), the physical

components of the state vector are given in terms of the wave-mode

coordinates by Vl 1] I
u(x,w) = (xW) (51)F(x,L,) w (x,W)

i Rw iRW

which when written out gives the scalar equations

- 20 -
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V

u(x,W) = w (x,w) + w (x,W) (52)

F(x,(w) = -iRw w (x,GL) + iRw w (x,w) (53) '-

POO

Eqn. (52) expresses the familiar fact that the displacement in an

'-
elastic longitudinal rod may be written as the sum of a wave travelling

in the direction of increasing x and a wave travelling in the direction

of decreasing x. Eqn. (53) states that the force (or stress) in the rod

can also be written as the sum of the same two waves, scaled (in the

frequency domain) by the appropriate factors.

The eigenvectors given by eqns. (39) and (40) remain eigenvectors 'P

when multiplied by any constant. By choosing the first components of

the eigenvectors to be unity, the wave-mode coordinates in eqn. (48)

are given the dimensions of displacement. If the second components

of the eigenvectors are chosen to be unity, the resulting wave-mode

coordinates will have the dimensions of force. Both sets of wave-mode

coordinates will satisfy eqn. (47).

The propagation constants given by eqns. (37) and (38) are purely

imaginary. Thus, waves on an elastic longitudinal rod are not

attenuated as they propagate. Further, the imaginary parts of the

propagation constants given by eqns. (37) and (38) are linearly pro-

portional to frequency, and thus waves in an elastic rod are nondis-

persive. The phase velocity of the waves, which as stated above is

equal to the inverse of the constant of proportionality, is, as is

well known, vE 7 ..

- 21 -
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L. ample 2: Joint Coupling Matrix for a Rigid One-Dimensional

Joint with Mass

In this example, the joint coupling matrix for a one-dimensional

rigid joint is derived. A rigid one-dimensional joint with mass m is

shown in Fig. 3a Two members, denoted by 1 and 2, are attached to

the joint. The joint is called one-dimensional because all members

attached to the joint lie along a line, and the joint is constrained

to move only along that line. The joint is subjected to an external P.

force Fj. Fig. 3a also shows local coordinate axes x and x for
1* 2

members 1 and 2, respectively, and a joint coordinate axis xj. Fig. 3b

shows the components u. and F. (i = 2,3) of the state vectors of the two
1 1

members at their respective points of contact with the joint, and the

components uj and F of the state vector of the joint.J|

Since the joint is rigid, the geometric compatibility requirement

at the joint is

u 2 =u 3 =uj (54)

Therefore,

u2 = 3 = j (55)

from which it follows that

-u 2 + u3 = 0 (56)

Applying Newton's Second Law to the joint gives, in terms of the

Fourier transforms of the displacements and forces,

2-

-F2 + F + F2 -m u (57)

-22-
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Substitution of eqn. (54) into eqn. (57) gives

-F2 + 3 F -mJ u (58) S,
2 2

or

2--
-MW u2 + F2 - F = FJ (59) .

Eqns. (56) and (59) can be written as

U2

Vi 0 1 -i uF = j (60)

_W 1 0 -1 2 3O

F 3

Eqn. (60) is in the form of the general joint coupling relationship

given by eqn. (15), with

°.5'

B = 12 (61)
-m A i1 0 -

Eqn. (61) gives the joint coupling matrix for the one-dimensional

joint of Fig. 3.

This simple example illustrates the general procedure for deriving

a joint coupling matrix. The joint coupling relationship for rigid

joints consists essentially of geometric compatibility requirements

and dynamic requirements, written in terms of Fourier transforms and

in matrix form. In [7], the procedure used to derive the joint coupling

matrix of eqn. (61) is applied to more complex two and three-dimensional

- 23 -
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reJ.

rigid joints.

Example 3: Scattering Matrix for the Junction of Two Elastic

Longitudinal Rods %

Two elastic longitudinal rods connected by a rigid one-dimensional

joint with mass m are shown in Fig. 4a. Rod 1 has mass density p',

cross-sectional area Al, and elastic modulus E Rod 2 has mass density
1

2 cross-sectional area A and elastic modulus E2 .are A2 t 2

As discussed in the previous example, the dynamics of the joint in

Fig. 4a are described by the joint coupling relationship given by

eqn. (60). In this example, the process of transforming eqn. (60) into

a scattering relationship of the form of eqn. (25) is illustrated.

From eqn. (51), the state vectors at points 2 and 3 in Fig. 4

are related to the wave-mode coordinates at points 2 and 3 by

u l 1 i w2
2= 

(62)

I2 tiRw iRlw w2 -

and

u 11 w

: (63)F3  R -iR 2 w iR2 1 w3 (63)

I I

where

R = A1  pIEI (64)

R 2 27 (65)

- 24 -
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The waves represented by w 2 , w2 , w3 , and w 3  are shown schematically,

by arrows in Fig. 4b. Substitution of eqns. (62) and (63) into eqn.

(60) gives

w +qV 1 1
1-i 0 1 0 LiRl, iR1 l W w 20

2 (66) .

iR2l iR2 G w(6

which can written as

1 0 0 w2

-1 0 1 -iRlW iRlW, 0 0 w
I 1 11 2J J (67)

-m 1 0 -1] 0 0 1 1 w F

0 0 -Rw iR2W w
2 2 3

Eqn. (67) is in the form of eqn. (18). Multiplying out eqn. (67) gives

-1 -1 1 1 w 0
= ~(68) ".

2 _+ 2
(-i iR I (-m. 2 +iR ) iR2{. -iR 2 W w (68)

t1. 1, w3

Note from Fig. 4b that w2 and W3 represent waves leaving the joint,

and w2  and w3  represent waves entering the joint. Rearranging the

25

_. . . . - .. ~ ~ ~ . - ., . * " _ ...,,



V,.

.. ,

order of the scalar equations contained in eqn. (68) gives

1~~• 11_

W 2  .

- (69)
(-MW2+iRI il (-m,- 2i Rl 1 1 + 2j '/'

13

Eqn. (69) is in the form of eqn. (22) with

w 2
1 - (70)

and

lW2
w (71) -"
-in

Eqn. (69) is eqivalent to !.

m2 +IR R"om2+~ ) iR2bj Ii ".l

-1 1

+ 2 (72)

-me -iR I) -iR 2 W 3
26 J
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Eqn. (72) is in the form of eqn. (23), with p

D =(73) .-
-out

-mW2 + iR1W) iR2 W

and

D. = (74)

n iRlw)  -iR2W] w-

The inverse of the matrix D given by eqn. (73) is
out ",-'"

-iR2  1

2 2
-mw +iR cw+iR w -mcd + iR wlaiR w

1 2 1 2
D-1 (75)

-out 2
-mw +iR1 "

-mw 2+iR+iR W -mw 2+iR w+iR Lo
1- 2 1 2

Premultiplication of both sides of eqn. (72) by Dout gives, after ,-

some manipulation, .

o'..

- 27 -



mw3  2 2i i n 2 ~ iR~ 1 2 2

w2 2 -
-mw2+iRl1w+iR2w -mw2+iRl1W+iR2w w

S2iRW 1 2

L -mw 2+iRlIw+iR 2 W -mw 2+iRl1 +iR 2 W 0 _7) j.:

Iwi ~ -iR _______

3 +i1 w  1 2j

-mw 2+iR1 w--iR 2w -mw 2 +iR 1 W+iR ,W.

+qn (76) i ntefr fen 2) ihtesatrn arxSw [

2

-ta +iRwi~ 2iW IF

2 2.
-mw +iR w+iR w -m +iR w+iR W I.b'

L1 2 1 2

an+.t(76 ave-mode formto n matrix S(7)

-m2 +iR w 1 • LF

1 2 2________

2 2
+iR w+iR w -m +iR w+iR W

1 2 1 2

SG w) ( 77)

.°.

V - -2iR liR w - 2_+iR 1w iR2 ,

2 2 2

I- 2 +iR wiR W-mLU+iR w~iR W -

2 2

2 2
2 2

-mw. +iR 1wk+iR 2 U -imu +iR 1 LiR 2 C

iR

-rm, + iR c)+ i R w m+iR C+iR u
1 2 1~ 2

128
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Eqn. (76) is the description of the dynamics of the joint of

Fig. 4 in terms of wave-mode coordinates. Note that the description of

the joint dynamics in terms of the physical components of the state

vectors (eqn. (60)) contains only information about the dynamics of the

joint. On the other hand, the description of the joint dynamics in

terms of wave coordinates given by eqn. (76), which implicitly contains

the joint coupling matrix given by eqn. (61) and the wave-mode matrices

given by eqns. (62) and (63), contains information about both the joint

dynamics and the dynamics of the members attached to the joint.

The quantity

2 "
MCI) +iRlw-iR2W

1 2
2-M(1_1+iRlw+iRw W _

d 2

in the scattering matrix S(w) given by eqn. (77) is the reflection

coefficient for w 2 , which represents a wave incident upon the joint

from the left, and the quantity

"S.

2iR W

-m 2+iR w+iR W•
1 2

-+t

is the transmission coefficient for w2 . Similarly, the quantity

mw2 -iR 1uaiR2 w

2
-M2 +iR w+iR W

1 2

is the reflection coefficient for w 3 , which represents a wave incident

upon the joint from the right, and the quantity

- 29 -
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2iR 2 W
2

_mIn +iR w+iR ,"w
1 2

is the transmission coefficient for w 3 Note that since each wave-mode

coordinate contains information about both displacement and force (or

stress), it is not necessary when using wave-mode coordinates to derive

one set of reflection and transmission coefficients for displacement

waves and a different set of reflection and transmission coefficients

for force (or stress) waves, as is done, for example, in [9]. Since the

wave-mode coordinates used here, which are defined by eqn. (48), have

the dimensions of displacement, the reflection and transmission

coefficients in the scattering matrix S(w) given by eqn. (77) correspond

to the displacement reflection and transmission coefficients given in [9].

The transmission and reflection coefficients contained in the

scattering matrix S(w) given by eqn. (77) depend on the frequency w.

Therefore, this is an example of dispersive scattering. As the frequency 44

w becomes very large, the scattering matrix S(w) given by eqn. (77)

approaches

-1 07 .

SM = (79)

Thus, for very high frequencies, the scattering is nondispersive, and

the reflection coefficients are equal to -1, while the transmission

coefficients are equal to zero. Thus for very high frequencies, the

.4 .

joint in Fig. 4 behaves like a rigid boundary.
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If the mass of the joint in Fig. 4 is zero, the scattering matrix

S(w) given by eqn. (77) becomes

R1 - R2  2R 2

R1 + R2  R1 + R2

S(o) = 2R R - Rj (80)
1 2

R + R R + R
1 2 1 2

The scattering matrix given by eqn. (80) contains the commonly derived

(see, for example, [9]) reflection and transmission coefficients for

displacement waves at the junction of two collinear longitudinal rods.

Example 4: Analysis of a One-Dimensional Lattice Structure

In this fourth and final example, which utilizes the results of

the previous three examples, the one-dimensional lattice of Fig. 5 is

analyzed using wave-mode coordinates and scattering matrices. The Ile

lattice consists of two elastic longitudinal rods connected by a rigid

one-dimensional joint. It is assumed that the joint is massless. Rod

1 has mass density p1, cross-sectional area AP, elastic modulus El, and

length ZI* Rod 2 has mass density p2$ cross-sectional area A2, elastic

modulus E2  and length k The joint is subjected to a given force

0, and it is desired to find the resulting force F1 (t) at point 1.

The scattering matrix relationship at the joint is given by eqn.

(76) as

- 31 -
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iw(R1+R2)

wher e"-"

R1 - R2  ..

112

r (82)

1B L ::] + i(+ 2

R - R
12 (82

2  R + R1 2

t2R 2  (84)

1 R +-R
121

rl = R1 + R2  (83) i

2R

2R (85)
2 R1 + R2

and R1 and R2 are given by eqns. (64) and (65), respectively.

The components of the wave-mode vector w at point 1 in Fig. 5

satisfy the relationship

(wi) = r (w) (86)
oN,

where r is the reflection coefficient at the left-hand boundary (point

1) of rod 1. The quantity r may be derived from the boundary conditions
0

at point 1. If, for example, point 1 is a fixed end, r = -1, and if

point 1 is a free end, r = 1 [10]. Similarly, the components of the

wave-mode vector y4 at point 4 in Fig. 5 satisfy the relationship

(w4) = )(w (87)

- 32-
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where r3 is the reflection coefficient at the right-hand boundary

(point 4) of rod 2. Again, the quantity r3 may be derived from the

boundary condition at point 4; if point 4 is a fixed end, r3 = -i, and *.,

if point 4 is a free end, r3 = 1. The quantities r in eqn. (86) and

r in eqn. (87) may be considered as 1 x 1 scattering matrices. It is

assumed that the quantities r and r3 are independent of frequency.

Eqns. (81), (86) and (87) are the scattering relationships for the

lattice of Fig. 5.

The components of the wave-mode vector 2 at point 2 in Fig. 5 and

the components of the wave-mode vector w1 at point 1 in Fig. 5 are

related by a wave-mode propagation matrix according to eqn. (47) aF.e 0,
= 1 (88)

where

1 i E (89)

Similarly, the components of the wave-mode vector y4 at point 4 in

Fig. 5 and the components of the wave-mode vector w 3 at point 3 in

Fig. 5 are related by

= -9 2] (90)

4 0 ew3 3 -
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where

I K(91)

Eqns. (88) and (90) are the wave-mode propagation relationships for the

lattice of Fig. 5.

Eqns. (81), (86), (87), (88) and (90) contain eight scalar
+ . . ... . + "°

equations for the eight unknowns wl , w1 , w 2 , w2 , w3  w3 , w4

and w4  These equations may be solved for wI  and w1  to give [11]

1 12y2 2

11-r re 1 e 2 ) -rt r t e 1e
o .3o2

(92)

e 1 + (t r3r 2r 3e2Y2)](wiu(RI1+R 2) ( rorle -2-y1 zl) 1r r e -2 2Y 2) rot r tle-2y 1 1e-2 y 2 z2

(0) r 2 3  o ) 3

(93)

Eqns. (9-) and (93) give the wave-mode coordinates w1  and w1  in terms

of . The physical components of the state vector at point 1 are

given in terms of the wave-mode coordinates at point 1 by eqn. (51) as

(94) "

Fi - iRl iRla W-

Substitution of eqns. (92) and (93) into the second scalar equation of

-34 -



eqn. (94) gives

-[ R I(l-r )e-1l1 1 + (t r1 r3r2)e 2
F 1 R1+R 2  (rrle

2 y -2y2l)(l2r2 r3 e-
2 Y2 21) _t - 2 22 (

1-rr 1 )(-r e-rt r te e

I..
Eqn. (95) gives the Fourier transform of F (t) in terms of the Fourier

transform of ,#(t). Thus, the quantity in the square brackets in

eqn. (95) is the transfer function between the force ejyand the force

F I  As will be shown below, the transfer function in eqn. (95) can be

written as an infinite series of constants multiplied by pure delays.

It is noted in passing that the values of w for which the denominator

of the transfer function in eqn. (95) vanishes are the natural

frequencies of the lattice of Fig. 5, and that there is an infinite

number of such frequencies. Thus, the lattice of Fig. 5 is, in the

language of linear system theory, an "infinite-order system."

In order to find Fl(t) , it is necessary first to know W,), and

then to perform an inverse Fourier transform on eqn. (95). In this

example it is assumed that

Ji 5.#0 (t) (96)
c,, %

where 6(t) is the Dirac delta function, so that [2]
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Substitution of eqn. (97) into eqn. (95) gives

I-

_ -I

R (1-ror (e t r-r2r 3 2 2)
R 12 -221 k\ Z 2yk -2901  L 2 +R G-r or 1e 1- I e 2 2 )' ot r 3t1 e- 1 1 e 2 j

ro\rt1 r e/- e

(98)

By ~ ~~ - reeae use kf -2-y 9dniy[1].

which99 can be written as [i

Rr 3t 1e e 2 22 + (1-r 2 r 3 e -YZ)e11

(1-rI. -2

40 R 1r 31) r r1
2 1 ( r r r3 e2%

rt r te 1e22

-2 -2 1 Z 

p2y 

2 Z 2

- 3 3 '.

(99)

By repeated use of the identity [12]

(F) , (m+1)(m+2) ... (n+m-1)zm (100)

eqn. (99) can be written as [11]
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FR 0

)0

1= IR+R (l-ro)
o \ 2 /-

cc _ (2n+l)y 1 I

(n r )n en = 0  
' -

o -2n-1y Z (2m+i)y1 k2

+ Z (r t r t Z (rorp(n+l,m)e e

n=l m=O"'"2']j

00 -2ny 1 .z -2m~ly ii
2(rrm P(n,m)e

\m=O 2' 
.

+ nE r 3 tl(rot 2 r 3 tl) Z m (rorl)m P(n+1,m)e- e( 2 m+1.
n=0 310231 M=O0

(r r cnlc -2ny 2 k 2 2(m+1)y2 )

. ... ,

(101)

where

P(n,m) (n+m-i)! (102)(n-l)!m!

Now, recalling the definitions of Y and y2 given by eqns. (89) and (91),

-iWT
and the fact that the inverse Fourier transform of e is 6(t-T) [2],

the inverse Fourier transform of eqn. (101) can be taken term by term.

to give
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0kt R 2)

Z(t (r r )X((2n+l)T[)

+ (r t r t1 n (rorl)mP(n+1,m)A(2nT,)A((2m+ll
0~ 2 3L1 

/J

(r 2 r 3 0 ~n)(n 2X((2m+1)i2

+ E r t (mr0 (rrInP(n+)(2n9A2nl(m) 2 m))

(103) b

where

T % rp (104)
1 1E 1

T (105)

2 2 T22

and X(T) is a time-shift factor defined by

f(t)X(T) =f(t-T)(1C)
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Writing out the first few terms of eqn. (130) gives

F (t) 0 
-I 

"
10

(- i) + rr (3T) + ..

+ (t)r3 tI[X( 1) + rorlX(3T1  + (ror1 ) 2(5T1 '

• L(2T2 ) + r2r3)(4t2) + (r2r3 ) 
2X(6-2) +. . -'

+ 5(t)rot 2r3t l 2(3Tl) 2rr 2(5i1)+ 3(rrl)2X(7T1 ) ...

* r\(2: 2 ) + r2 r)(4T2 ) + (r2 r3 )
2X(6T 2) +*.-

L

+ 9(t)r 3 tl(rt 2r 3tl)1 (BTl) + 2r r ol(5T + 3(ror) 2 (7rl) +M..]

o 23l 1 ol 1

• 42)+2r 2r3X(672 ) +4 3(r 2 r 3 ) :2) +.

+ (~t)(rot 2 r 3 t1 )2L ( S Tl ) + 3rorX(7 1 )+ 6(l)2 1  + I

3(4q2) + 2r 2 r3 (6 2 ) + 3(r2r3 )22 ]

(t)r3tl(rot r3 t1
) 2 (5 ) + 3r r ( ) + 6(rorl)

* [,(62) + 3r2 r3 (8 2) + 6(r 2r3 )
2 1O 2) +...]

+ .. (o07) t 2r31)
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Eqn. (103), which is an infinite serie.> of impulses scaled in amplitude

by reflection and transmission coefficients and delayed by multiples e:

of the times T and T is the desired solution for F (t).
1 19

Each of the impulses in eon. (107) can be interpreted physically

by considering the propagation of the initial impulse applied to the

joint. The initial impulse causes an impulse to propagate to the

left towards point 1, and also causes an impulse to propagate to the

right towards point 4. After a time delay I the impulse which

initially propagates to the left arrives at point 1, where it is

reflected and scaled in amplitude by the reflection coefficient r .

The reflected impulse arrives at the joint after an additional time
.1,

delav T, and at the joint it is partially reflected back towards point

1, and partially transmitted towards point 4. The reflected impulse is

scaled in amplitude by the reflection coefficient rl, and the trans-

mitted impulse is scaled in amplitude by the transmission coefficient

tr.. The impulse which initially propagates from the joint to the right

arrives, after a tine delay at point 4, where it is reflected and

scaled in amplitude by the reflection coefficient r The reflected

impulse arrives at the joint after an additional time delay T,, and at

the joint it is partiallv reflected back towards point 4, and partially

transmitted towards point 1. The reflected impulse is scaled in ampli-

tude by the reflection coefficient r,, and the transmitted impulse is

scaled in amplitude by the transmission coefficient t This process.

of propagation, reflection, and transmission continues indefinitely.

Since the propagation constants and the scattering matrices for the

lattice of Fig. 5 are nondispersive, the initial impulse applied to the

joint maintains its identity as an impulse as it propagates and as it

-40-
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is reflected and transmitted. .4

The first infinite series in eqn. (107) represents those impulses

which initially propagate from the joint to the left, and then 
remain rAN.

in rod 1 due to successive reflections at point 1 and at the joint.

The first product of two infinite series in eqn. (107) represents

those impulses which initially propagate from the joint to the right,

and then, after an arbitrary number of reflections in rod 2, are trans-

mitted through the joint into rod 1, and remain thereafter in rod 1.7

The second product of two infinite series in eqn. (107) represents .

those impulses which initially propagate from the joint to the left,

reflect an arbitrary number of times in rod 1, are transmitted through

the joint into rod 2, reflect an arbitrary number of times in rod 2,

are transmitted through the joint into rod 1, and remain thereafter

in rod 1. The third product of two infinite series in eqn. (107)

represent those impulses which initially propagate from the joint to

the right, reflect an arbitrary number of times in rod 2, are trans-

mitted through the joint into rod 1, reflect an arbitrary number of 7

times in rod 1, are transmitted through the joint into rod 2, reflect -.

an arbitrary number of times in rod 2, are transmitted through the joint

into rod 1, and remain thereafter in rod 1. The remaining terms in

eqn. (103) can be interpreted in a similar manner.

The response F1(t) given by eqn. (103) is obtained here by using

wave-mode coordinates and scattering matrices in the frequency domain

to obtain an expression FI(w), and then performing an inverse Fourier

transform to obtain F (t). The response F (t) can also be obtained by 
Salt

a direct consideration of propagation, reflection, and transmission in

-41 
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the time domain. Such an approach is taken in [13]. The response

F (t) given here agrees exactly with the response which is obtained

using the methods given in [13]. In fact, the numerical coefficients

which appear in the various infinite series of eqn. (103), and which

occur here naturally as a part of the process of inverse Fourier

transformation, account for the existence of "equivalent paths" from

the input location (the joint) to the response location (point 1). The

concept of equivalent paths in a lattice structure is discussed

thoroughly in Appendix A of [131, and some sketches of equivalent

paths in the lattice of Fig. 5 are given in [11). The advantage of P

the approach taken here, which uses wave-mode coordinates and scattering

matrices, is that this approach may be extended, using the same formal

procedures, to the analysis of two and three-dimensional lattice

structures.

I.
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CONCLUS IONS.

The examples given in the previous section illustrate, in principle,

d.

all the steps required for an analysis of wave propagation in an

arbitrary lattice structure. The basic ingredients of such an analysis

are a wave-mode matrix Y(,-) and a wave-mode propagation matrix W(W)

-."

for each member of th i the rsand a scattering matrix S() and anip

wave-mode generation matrix C(w) for each joint in the lattice. A

wave-mode propagation relationship such as eqn. (7) applied to each

member and a sc-.ttering relationship such as eqn. (25) applied to each

joint provide a set of equations which can be solved for the wave-mode

vector w at any point in the lattice. The state vector z at any point

in the lattice can then be obtained through the use of the wave-mode

transformation given by eqn. (5). Finally, individual physical com-

ponents of the state vector z may be obtained through the process of

inverse Fourier transformation.

The major difficulty in the procedure just described is the

evaluation of the inverse Fourier transform. Efficient numerical

techniques for evaluating complicated inverse Fourier transforms are

necessary if the methods described in this paper are to be used

successfully in the analysis of large and complex lattice structures.

434
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Fig. 3 Rigid one-dimensional joint.
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